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Domain wall roughening in dipolar films in the presence of disorder
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We derive a low-energy Hamiltonian for the elastic energy of a Ne´el domain wall in a thin film with in-plane
magnetization, where we consider the contribution of the long-range dipolar interaction beyond the quadratic
approximation. We show that such a Hamiltonian is analogous to the Hamiltonian of a one-dimensional
polaron in an external random potential. We use a replica variational method to compute the roughening
exponent of the domain wall for the case of two-dimensional dipolar interactions.
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I. INTRODUCTION

The roughening properties of elastic manifolds in t
presence of quenched disorder is a well studied problem.
subject of study is usually the asymptotic~long-distance! re-
gime in which one wishes to compute the roughening ex
nentz of theD dimensional elastic manifold@described by a
displacement fieldf(x)# defined by

^@f~x!2f~x8!#2&5ux2x8u2z, ~1!

wherex is the position vector in theD-dimensional configu-
ration space and where the brackets represent an ave
over thermal fluctuations and the overline an average o
the realizations of the quenched disorder. Obviously,
study of the crossover between short distances, where
thermal fluctuations dominate and the long-distance beh
ior, which is determined by the disorder, is also of intere
Among the methods applied to the study of this problem
the use of Imry-Ma type of arguments@1–3#, the mapping of
one-dimensional interfaces in two dimensions to the no
Burgers equation@4#, which yields an exact result for th
roughening exponent@5,6#, variational approaches involvin
replica averaging and replica symmetry breaking@7–9#, and
functional renormalization group~RG! calculations@10,11#.
The role played by long-range interactions does not seem
be so well understood, although it follows from the one-lo
functional RG results of Emig and Nattermann@11# that in
the important case of a magnetic domain wall in the prese
of long-range dipolar interactions, one simply needs to
place the expansion parametere542D by e53(32D)/2
~whereD is the dimension of the manifold! in the expres-
sions for the critical exponents obtained in the absence
dipolar interactions, in order to account for the presence
these interactions@12#. In particular, if one applies this resu
to the case of a line domain in a thin magnetic film (D
51), the effective expansion parameter ise53 in both
cases, which means that in this case and to one-loop o
the critical exponents obtained are the same in the absen
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presence of dipolar interactions. Although one expects
RG calculations to provide a qualitative understanding at l
dimensions compared to the upper critical dimensionD
53 in this case!, it is still questionable to what extend on
can perform such analytical continuation using just the o
loop results. Furthermore, the results of Emig and Nat
mann were based on a series expansion of the dipolar en
@13,14# which meant that, in the absence of disorder,
Hamiltonian describing the low-energy degrees of freed
of the domain wall was quadratic in the domain-wall d
placement field, i.e., the random potential is the only sou
of nonlinearity in the problem. One still needs to justify th
such approximation is sufficient@15#.

Having in mind such difficulties, we wish to discuss th
properties of a one-dimensional domain wall in a tw
dimensional ferromagnetic film, in the presence of dipo
interactions and a short-range correlated random field, wh
the dipolar interaction is treated beyond the quadratic
proximation. We wish to check whether it is still possible
map such a problem to a~modified! Burgers equation, as wa
done by Huseet al. @5# for the case of random-bond disord
and by Zhang@6# for the case of random-field disorder, in th
absence of long-range interactions. Such a mapping
achieved because one can map the line domain to the w
line of a quantum particle in 111 dimensions. The free en
ergy of the line domain can then be shown to obey a Sch¨-
dinger equation in imaginary time in the presence of a r
dom potential. A Cole-Hopf transformation can then be us
to convert this equation into a noisy Burgers equation w
additive noise, for which the stationary distribution is know
in one-dimension@16#. This allows one to compute th
roughening exponent. In our case, the presence of the dip
interaction does not allow one to write the energy of t
domain wall as an action for a single quantum particle,
instead we obtain an action for a quantum particle that in
acts with an annealed ‘‘vector potential,’’ whose propaga
is determined by the dipolar propagator. In 111 dimensions,
a gauge transformation allows us to substitute the vector
tential by a scalar one, which can then be integrated
leaving us with an action similar to the action of a polaron
considered by Feynman@17,18#, i.e., the dipolar interaction
introduces a ‘‘self-retarded’’ interaction of the particle wi
itself. Despite the fact that such action cannot be integra
exactly, we can still apply a variational method in the sp
©2002 The American Physical Society08-1
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of Feynman@7–9#, in which one introduces replicas of th
system in order to average the free energy of the domain
over the realizations of the random field. Using the hier
chical replica symmetry breaking~RSB! ansatz of Parisi
@19#, we were able to derive a set of nonlinear equatio
whose self-consistent solution yields the long-distance ph
ics of the problem within the realm of this approximatio
With this method, we are able to treat two different situ
tions. The one of a thin ferromagnetic film grown on
nonmagnetic substrate, in which the dipolar interact
has the usual three-dimensional form, and the one of a
ferromagnetic film grown between two type I supe
conductors, i.e., the case of a superconductor/ferromag
superconductor~SC/FM/SC! heterostructure. We have show
elsewhere@20# that in this case the dipolar interaction has
two-dimensional form at small wave vectors, coming fro
the renormalization of the magnetic energy due to the Me
ner effect in the superconductors. Although we were una
to obtain an analytic solution of the variational nonline
equations, we were able to justify that in the case of tw
dimensional dipolar interactions~i.e., for the SC/FM/SC het-
erostructure!, the quadratic approximation is indeed a
equate. This case is not only easier to treat analytically,
also more interesting than the case of three-dimensiona
polar interactions, for which one expects the dipolar inter
tion to be irrelevant~see above!. Therefore, we restrict ou
discussion to the case of two-dimensional dipolar inter
tions in this paper. Furthermore, we can also show that in
case, if one works within the quadratic approximation,
elastic energy of the domain wall has the same analyt
form as the energy of a domain wall in a ferroelastic mate
as studied by Kolomeiskiiet al. @12# and also of the energy
of a liquid-gas interface in a disordered solid, as studied
Hazareesing and Me´zard @9#. In both cases, one obtains,
two dimensions, a value of 1/3 for the roughening expone
This is indeed the value that we obtain for the roughen
exponent in our problem. It should be nevertheless noti
that these three problems, though mathematically sim
have a different physical origin and motivation.

The structure of this paper is as follows. In Sec. II, w
derive a low-energy Hamiltonian describing the Ne´el domain
wall elastic degrees of freedom. This Hamiltonian can
interpreted as the action in imaginary time of a quant
particle in 111 dimensions. In Sec. III, we use the replic
trick to average over the random field realizations, wh
generates a many particle nonquadratic action. In Sec. IV
introduce a generalization of the variational ansatz of Me´zard
and Parisi which allows us to consider the effect of the sh
range correlated disorder and of the nonlocal dipolar term
the many particle action. One obtains a set of nonlinear eq
tions that have to be solved self-consistently. In Sec. V,
perform the analysis of these equations in the particular c
of the hierarchical replica symmetry breaking solution of P
risi and we discuss the validity of the quadratic approxim
tion for the dipolar term in these equations, which permits
determine the roughening exponent of the domain wall.
nally, in Sec. VI, we present our conclusions.
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II. ENERGY OF A SINGLE DISTORTED DOMAIN WALL
IN A TWO-DIMENSIONAL XY MODEL WITH

DIPOLAR INTERACTIONS AND IN A RANDOM FIELD

We consider a Ne´el ~i.e., 180°) domain wall in a thin
two-dimensional ferromagnetic film in the presence of dip
lar interactions and a short-range correlated quenched
dom field. The magnetization is in the plane of the film.
the straight domain configuration, the wall is oriented alo
the y axis and the center of the wall is located atx50. The
thermal and random field fluctuations give rise to deviatio
of the domain wall from its straight configuration, i.e., at
given positiony, the center of the domain is displaced fro
x50 to x(y) ~we neglect overhangs!. In this case, Eq.~1!
reduces to

^@x~y!2x~y8!#2&5uy2y8u2z. ~2!

The distanceuy2y8u is considered to be very large wit
respect to the lattice spacing and to the length over which
random field is correlated~see below!. In the absence of
dipolar interactions, one can, as stated above, through a m
ping to a Schro¨dinger equation@6#, show thatz51.

In order to determine the elastic energy of the dom
wall, we consider the underlying system of ferromagne
spins to be in a square lattice with lattice constanta and
overall dimensionsLx3Ly . The system has antiperiodi
boundary conditions along thex direction~in order that there
is a single domain wall in the system! and periodic boundary
conditions along they direction and is at finite temperatureT.
Such system is described by a~classical! XY model Hamil-
tonian, with dipolar interactions and in a random field,

H52
1

2
(
^ i , j &

Ji j Si•Sj2m(
i

hi•Si1
G

2
(
iÞ j

S Si•Sj

uRi2Rj un

2
n~Ri2Rj !•Si~Ri2Rj !•Sj

uRi2Rj un12 D 2D(
i

~Si
y!2. ~3!

For the case of two-dimensional dipolar interactions~i.e., for
the SC/FM/SC heterostructure!, the constantsm and G are
given in the mks system bym5m0 mB gL and G
5(m0/4pm rlL)(gLmB)2, wherem0 is the magnetic permi-
ttivity of the vacuum,mB the Bohr magneton, andgL the
Landé factor of the spin system. The constantslL and m r
are, respectively, the London penetration depth and rela
magnetic permittivity of the superconductor. In this casen
52. In the case of three-dimensional dipolar interactio
which we will not consider,G5(m0/4p)(mB gL)2 and n is
equal to 3. The quantitiesJi j andD have the dimensions o
energy @21#. The field hi is a random field with Gaussia
correlations, i.e.,hi

a hj
b5D i j d

ab. In order to stabilize the do-
main wall, we have added to the Hamiltonian above an ea
axis anisotropy term, along they axis, represented by the las
term in Eq.~3!.

For a straight Ne´el domain wall, the spin configuration
has the form
8-2
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Si
x5Scosf~xi !, ~4!

Si
y5Ssinf~xi !, ~5!

where i is the site label and wheref(x) goes from2p/2
when x→2Lx/2 to p/2 when x→Lx/2, with S being the
value of the spin. The functionf(x) changes its value from
2p/2 to p/2 in a region of widthw aroundx50. Sincew is
typically of the order of tens of nanometers@22# and we are
only interested in the long-distance properties of the dom
wall, we can writedf(x)/dx5pd(x). If the center of the
domain wall is displaced fromxi50 to xi5x(yi), the spin
configuration becomes

Si
x5Scosf„xi2x~yi !…, ~6!

Si
y5Ssinf„xi2x~yi !…. ~7!

We wish to compute the partition functionZ
5Tr(e2dH/kBT), where dH5dHexc1dHr f 1dHdip is the
energy difference between a configuration described by
displacementx(y) and the straight domain configuration. W
define the discrete Fourier transforms

Sq
a5(

Ri

Si
ae2 iq•Ri, ~8!

x~qy!5(
yi

x~yi !e
2 iqyyi, ~9!

whereq belongs to the first Brillouin zone. We will approx
mate the sums overi by integrals, according to the formula

(
Ri

'
1

a2E d2x, (
yi

'
1

aE dy, ~10!

valid for a square lattice. It can be shown that the~positive!
contribution to the exchange energy coming from t
domain-wall deformation is given to second order in the d
placement field, by@13#

dHexc52
p2S2

2Na4 (
q

@J~qx ,qy!2J~qx,0!#x~qy!x~2qy!

'
p2JS2

2Lya
(
qy

qy
2x~qy!x~2qy!, ~11!

whereN5LxLy /a2 is the total number of sites and where w
have expandedJ(q)'J02Ja2q2. In real space, Eq.~11!
reads

dHexc5
1

2
sE

2Ly/2

Ly/2

dyS dx

dyD
2

, ~12!

which has the same form as the kinetic part of the action
a particle of masss in one dimension, withs5p2JS2/a
being the line tension of the domain wall. The contributi
coming from the random field can be shown to be equa
@23#
03160
in
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dHr f 5m̃E
2Ly/2

Ly/2

dyE
0

x(y)

dxh̃y~x,y!, ~13!

where m̃5m0mBgLpS/a and h̃y5hy/a @24#. This formula
can be made plausible if we consider instead a constant
along y. It can also be easily seen from Eq.~11! that the
easy-axis anisotropy term does not contribute to the de
mation energy of the domain wall.

Since we wish to compute the partition function, we ha
to consider the factore2Hdip /kBT, whereHdip is given by

Hdip5
g

2V (
q

F~q!~q•Sq!~q•S2q!, ~14!

where V5LxLy is the area of the sample. For two
dimensional dipolar interactions,g5(m0/2m rlL)(gLmB)2

andF(q)51/q2 @20#. For three-dimensional dipolar interac
tions,g5(m0/2)(gLmB)2 andF(q)51/q. Thus, by consider-
ing the different dipolar kernelsF(q), one can treat the two
different cases.

Using a Hubbard-Stratonovich transformation, we wr
e2Hdip /kBT as

e2Hdip /kBT5NE DAqexpS 2
1

2VkBT (
q

AqF 21~q!A2q

1
Ag

VkBT (
q

~q•Sq!A2qD , ~15!

whereN is a normalization factor. We can now show that

q•Sq5
ipS

a2 E2Ly/2

Ly/2

dye2 iqxx(y)2 iqyy
dx

dy
, ~16!

from which it follows that

1

V (
q

~q•Sq!A2q5
ipS

a2 E2Ly/2

Ly/2

dyA„x~y!,y…
dx

dy
, ~17!

and one can see that there is no contribution to the dip
energy whenx(y)5const. The partition function of the do
main wall’s degrees of freedom involves the functional in
gration of the Boltzmann factore2dH/kBT, over the space of
functionsx(y).

We shall now make a change in our notation. We w
write

y→t, x~y!→x~t!,
dx

dy
→ ẋ~t!,

qy→vm , e5
pSAg

a2
. ~18!

The subscriptm stands for the fact that the wave vectorsvm
are discrete, due to the periodic boundary conditions al
8-3
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t (y). If we use this notation in the formulas above, we ha
collecting all the factors, the following expression for th
partition function:

Z5NE Dx~t!DA~qx ,vm!e2S/kBT, ~19!

where the actionS is given by

S5
1

2
sE

2Ly/2

Ly/2

dt ẋ2~t!1m̃E
2Ly/2

Ly/2

dtE
0

x(t)

dxh̃y~x,t!

2 ieE
2Ly/2

Ly/2

dtA~x~t!,t!ẋ~t!

1
1

2V (
qx ,vm

A~qx ,vm!F 21~qx ,vm!A~2qx ,2vm!.

~20!

This is the action of a single quantum particle in 111 di-
mensions, with ‘‘mass’’s and ‘‘charge’’e, at ‘‘inverse tem-
perature’’ Ly and with a ‘‘Planck constant’’ equal tokBT.
Such particle is in a external random potentialV(x,t)
5m̃*0

xdx8h̃y(x8,t) and interacts with a ‘‘vector potential’
A(qx ,vm) @25# characterized by a propagator equal
F(qx ,vm). This result belongs to the well known class
mappings of two dimensional problems of classical statist
mechanics to 111 dimensional quantum problems. Now
since one has periodic boundary conditions along thet (y)
axis, the following identity holds:

E
2Ly/2

Ly/2

dtA„x~t!,t…ẋ~t!52E
2Ly/2

Ly/2

dtE
0

x(t)

dx8
]A~x8,t!

]t
,

~21!

which corresponds to a gauge transformation of the ac
@26#. The use of this identity eliminates the dependence
the ‘‘velocity’’ ẋ(t) in all terms of Eq.~20! except the first
one. The actionS now reads

S5
1

2
sE

2Ly/2

Ly/2

dt ẋ2~t!1E
2Ly/2

Ly/2

dtV„x~t!,t…

1 ieE
2Ly/2

Ly/2

dtE
0

x(t)

dx8
]A~x8,t!

]t

1
1

2V (
qx ,vm

A~qx ,vm!F 21~qx ,vm!A~2qx ,2vm!.

~22!

We can now integrate out the fieldA(qx ,vm), obtaining an
action entirely in terms ofx(t) alone. We obtain
03160
,

l

n
n

S5
1

2
sE

2Ly/2

Ly/2

dt ẋ2~t!1E
2Ly/2

Ly/2

dtV„x~t!,t…

1
e2

2V (
qx ,vm

vm
2

qx
2
F~qx ,vm!E

2Ly/2

Ly/2

dtE
2Ly/2

Ly/2

dt8

3exp$2 iqx@x~t!2x~t8!#2 ivm~t2t8!%. ~23!

This action can be used to compute the roughening expo
of the domain wall. Equation~23! also shows that, apar
from the interaction with thet dependent random potentia
V(x,t), the actionS is analogous to the action of a one
dimensional polaron, as written by Feynman@17,18#.

However, in order to compute the roughening expone
one has to determine the following quantity:

^~x~t!2x~t8!!2&5

E Dx~t!e2S/kBT@x~t!2x~t8!#2

E Dx~t!e2S/kBT

,

~24!

which involves determining the average of the distribution
quenched disorder over a quotient. This type of averag
places the same problem as when one needs to average
the free energy of the system, i.e., one needs to determine
averageln Z, instead of simply averaging over the partitio
function Z. This can be seen by including a source fie
coupled tox(t) in Z. The two-point correlation function
appearing in Eq.~24! can be computed fromln Z by differ-
entiating it with respect to the sources and taking th
sources to be zero.

III. THE AVERAGE OVER DISORDER: REPLICA TRICK

We need to perform the average over the random fi
h̃y(qx ,vm), which obeys a Gaussian distribution with a se
ond moment equal to

^h̃y~qx ,vm!h̃y~qx8 ,vm8 !&5
N

a2
D~qx ,vm!dqx1q

x8,0dvm1v
m8 ,0 .

~25!

In order to perform the averaging over disorder in the fr
energy, one introducesn distinct copies~replicas! of the sys-
tem @27# and makes use of the identity

ln Z5 lim
n→0

Z n21

n
. ~26!

One performs the disorder average overZ n for integern and
makes the analytical continuation ton→0. One obtains

Z n5E )
a

Dxa~t!e2SR /kBT, ~27!

where the ‘‘replicated’’ actionSR is given by
8-4
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SR5
1

2
s(

a
E

2Ly/2

Ly/2

dt@ ẋa
2~t!1V0

2xa
2~t!#

1
m̃2n

kBTLx
(
a,qx

D~qx,0!

qx
2 E

2Ly/2

Ly/2

dt cos„qxxa~t!…

1
e2

2V (
a,qx ,vm

vm
2

qx
2
F~qx ,vm!E

2Ly/2

Ly/2

dtE
2Ly/2

Ly/2

dt8

3exp$2 iqx@xa~t!2xa~t8!#2 ivm~t2t8!%

2
m̃2

kBTV (
a,b,qx ,vm

D~qx ,vm!

qx
2 E

2Ly/2

Ly/2

dtE
2Ly/2

Ly/2

dt8

3exp$2 iqx@xa~t!2xb~t8!#2 ivm~t2t8!%, ~28!

and where the last term represents the inter-replica inte
tion, due to the presence of the random potential. We h
included in SR the effect of an applied fieldh̃ext

y (x)

5(sV0
2/m̃)x. This term gives rise to the second term in t

action, which is a harmonic potential. The presence of
term is necessary to guarantee thatSR is bounded from be-
low, given that the last term of Eq.~28! comes with a nega
tive sign.V0 can be set to 0 at the end of the calculation

IV. A VARIATIONAL ANSATZ FOR THE FREE ENERGY:
VARIATIONAL EQUATIONS

The action~28! cannot be integrated exactly. Therefor
we need to develop an approximation scheme. We shall
low Mézard and Parisi@7# and Goldschmidt@8#. We choose a
trial quadratic action of the form

S0@ha~t!#5
1

2
s(

a
E

2Ly/2

Ly/2

dt@ ẋa
2~t!1Va

2xa
2~t!#

2
1

2 (
a,b

E
2Ly/2

Ly/2

dtE
2Ly/2

Ly/2

dt8xa~t!Qab~t2t8!

3xb~t8!2(
a
E

2Ly/2

Ly/2

dtha~t!xa~t!, ~29!

where we have included a source fieldha(t), which is useful
in the calculation of correlation functions. The Me´zard-Parisi
ansatz has been generalized by including a matrix func
Qab(t2t8), with a nontrivial dependence ont2t8, neces-
sary to take into account the effect of the nonlocal dipo
interaction. In the Me´zard and Parisi case,Qab(t2t8)
5Qabd(t2t8), since they considered only short-range c
related disorder. Goldschmidt has considered several di
ent forms for the kernelQab(t2t8), all of which is nonlocal
in t2t8, and which are able to account for the problem o
quantum particle in a disordered static potential and for
related problem of a polymer in a random potential w
long-range correlated disorder~see below!. Since Qab(t)
5Qab(t1Ly), we can representQab(t) in terms of Matsub-
ara modesQab(t)51/Ly(mQab

m eivmt. The values ofVa
2 and
03160
c-
e

is

,
l-

n

r

-
r-

e

Qab
m are to be chosen appropriately. We also demandS0 to be

translationally invariant whenVa→0. This gives rise to the
constraint

Qbb
0 52 (

aÞb
Qab

0 . ~30!

It can be shown that the normalized generating function
the correlation functions of such a quadratic action, is giv
by @28#

ZN@ha~t!#5expS 1/2~kBT!2(
ab

E
2Ly/2

Ly/2

dtE
2Ly/2

Ly/2

dt8

3ha~t!Gab~t2t8!hb~t8! D , ~31!

where Gab(t2t8)5^xa(t)xb(t8)& is given in terms of its
Matsubara modes, by

Gab
m 5kBT@s~vm

2 Î 1V̂2!2Q̂m#ab
21 , ~32!

where Î is the unit matrix in replica space andV̂2 is the
diagonal matrix with elements equal toVa

2 . The free energy
as computed from the trial actionS0@0#, with the sources
ha(t) equal to zero, can be shown to be equal to

F05Ct2
kBT

2 (
m,m

ln$~1/kBT!@svm
2 1~sV̂22Q̂m!m#%,

~33!

wherem indicates the basis in which the matrixsV̂22Q̂m is
diagonal. One now uses the Feynman inequality forF5

2kBT lnZ n, which states that

F<Fvar5F01^SR2S0@0#&0 , ~34!

where the average on the right-hand side of Eq.~34! is over
the trial quadratic actionS0@0#. Note that F52kBTln Z
5 lim

n→0
F/n. One obtains forFvar the expression

Fvar

Ly
5C̃t2

kBT

2Ly
(
m,m

ln$~1/kBT!@svm
2 1~sV̂22Q̂m!m#%

1
s

2Ly
(
a,m

~V0
22Va

2!$~1/kBT!@svm
2 Î 1~sV̂2

2Q̂m!#%aa1
1

2Ly
(

a,b,m
Qab

m $~1/kBT!@svm
2 Î 1~sV̂2

2Q̂m!#%ba1
m̃2n

kBTLx
(
a,qx

D~qx,0!

qx
2

e2(1/2)qx
2Gaa(0)

1
1

2V (
a,b,qx ,v

E
2Ly/2

Ly/2

dtS e2v2

qx
2

F~qx ,v!dab
8-5
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2
m̃2

kBT

D~qx ,v!

qx
2 D expH 2 ivt2

1

2
qx

2@Gaa~0!

1Gbb~0!22Gab~t!#J , ~35!

where the following identities, valid for a quadratic action
zero sources,

^e2 iqxxa(t)&05e2(1/2)qx
2Gaa(0)

and

^e2 iqx[xa(t)2xb(0)]&05exp$2 1
2 qx

2@Gaa~0!

1Gbb~0!22Gab~t!#%

were used. Following Hazareesing and Me´zard @9#, we
choose the random field to have anisotropic correlatio

D(qx ,vm)5De21/2qx
2B 2

, with correlation lengthB along x
@29,30# and we choose the two-dimensional form of the
polar kernel, i.e.,F(qx ,vm)51/(qx

21vm
2 ). We have to mini-

mize Eq.~35! with respect to the free parametersQab
m and

Va
2 . Such procedure gives the following self-consiste

equations:

Va
25V0

22
m̃2Dn

A2pkBT
@B 21Gaa~0!#21/2, ~36!

Qab
m 5Qab

0 1 f a
mdab, mÞ0 ~37!

with

Qab
0 5

m̃2D

A2pkBT
@B 21Gaa~0!1Gbb~0!22Gab~0!#21/2,

~38!

(aÞb),

f a
m52e2E

0

Ly/2

dt@12cos~vmt!#F 1

2pgaa~t!

2
t

4Apgaa
3/2~t!

et2/4gaa(t)erfcS t

2gaa
1/2~t!

D G , ~39!

with Qbb
0 given by Eq. ~30! and wheregaa(t)5Gaa(0)

2Gaa(t) @31#. We have approximated the sum overqx by an
integral, a procedure that becomes exact in the thermo
namic limit, and erfc(x) is the complementary error function
These equations constitute a closed nonlinear system tha
to be solved self-consistently in the limitn→0. We consider
the solution of these equations in this limit in the next s
tion.
03160
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V. ANALYSIS OF THE VARIATIONAL EQUATIONS
FOR A TWO-DIMENSIONAL DIPOLAR

INTERACTION: HIERARCHICAL REPLICA
SYMMETRY BREAKING

One needs to take the limitn→0 in the self-consisten
equations derived above. This implies dealing with the m
trix structure of the equations in this limit. One cannot
this in general. However, there is a particular parametriza
of these matrices, due to Parisi@19#, which is sufficiently
general for our purposes. This is the so called hierarch
RSB. The diagonal elements of the matrixQab ~with dimen-
sionsn3n wheren is arbitrarily large! are taken to be all
equal to q̃ and the off-diagonal elements are taken to
equal toq0 . Qab is then partioned in block-diagonal subm
trices, the elements ofQab outside these blocks keeping th
value q0 and the elements inside the blocks taking a n
valueq1 ~except the diagonal elements that keep their va
q̃). The procedure is repeated in an equal form for ev
diagonal block submatrix, the off-diagonal elements of the
submatrices keeping the valueq1 and the elements inside th
diagonal subblocks taking the valueq2. This procedure is
repeated ‘‘ad infinitum.’’ The multiplication rules obeyed by
these hierarchical matrices are analytically continued ton
→0. The off-diagonal elements ofQab are then parametrized
by a functionq(u),uP@0,1# and the diagonal elements a
parametrized by the numberq̃. The constraint~30! takes the
form

q̃5E
0

1

duq~u!, ~40!

and one can show that the matricesGab
m are also param-

etrized by a functiongm(u) and byg̃m that parametrizes the
diagonal elements. In the thermodynamic limitLx5Ly→`,
vm→v, g̃m→g̃(v), andgm(u)→g(v,u) and one gets, us
ing Eqs. ~36!–~39!, the following relations, whereg̃(t)

@g(t,u)# is the Fourier transform ofg̃(v) @g(v,u)#,

V̂25V0
22

m̃2Dn

A2pkBT
@B 21g̃~t50!#21/2, ~41!

q~u!5
m̃2D

A2pkBT
$B 212@ g̃~t50!2g~t50,u!#%21/2,

~42!

f ~v!52e2E
0

`

dt@12cos~vt!#F 1

2pg~t!

2
t

4Apg3/2~t!
et2/4g(t)erfcS t

2g1/2~t!
D G , ~43!

and whereg(t)5g̃(t50)2g̃(t). One sees from Eq.~41!

that whenn→0, V̂25V0
2. The functionsg̃(v) andg(v,u)

are in turn given by
8-6
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g̃~v!5
kBT

s~v21V0
2!2 f ~v!

S 11
q~0!

s~v21V0
2!2 f ~v!

1E
0

1dv

v2

@q#~v !

s~v21V0
2!2 f ~v!1@q#~v !

D , ~44!

g~v,u!5
kBT

s~v21V0
2!2 f ~v!

S q~0!

s~v21V0
2!2 f ~v!

1E
0

udv

v2

@q#~v !

s~v21V0
2!2 f ~v!1@q#~v !

1
@q#~u!

u$s~v21V0
2!2 f ~v!1@q#~u!%

D , ~45!

where @q#(u)5uq(u)2*0
udvq(v). Substituting Eqs.~44!

and~45! in Eq. ~42! and differentiating with respect tou, one
obtains the equations

q8~u!50, ~46!

or

q~u!5S m̃2D

A2p~kBT!3/2D 2/3

3S E
2`

` dv

2p

1

$s~v21V0
2!2 f ~v!1@q#~u!%2D 21/3

.

If the first equation is valid in the whole intervaluP@0,1#, its
solution is simplyq(u)5const, which is the replica symme
ric solution. The second equation is easily solvable iff (v)
50 ~i.e., e50) and the solution was discussed by Me´zard
and Parisi@7#. Also, one has

^@x~t!2x~t8!#2&5 lim
n→0

2

n (
a

@Gaa~0!2Gaa~t2t8!#

52g~t2t8!, ~47!

which allows for the computation ofz onceg(t) is know. In
the presence of dipolar interactions, Eq.~43! depends on
g(t) and one has to resort to a numerical approach if
wishes to solve it self-consistently. However, if one simp
takes the zeroth-order resultf (v)'2(e2/2)uvu, coming
from the expansion off (v) in powers ofg(t), one sees that
apart from the contribution coming from the line tensions,
Eqs. ~44!–~46! are identical to the ones obtained by Haz
reesing and Me´zard @9# in their study of the roughening
properties of a liquid-gas interface in a disordered so
Also, if one expands the last term of Eq.~23! to quadratic
order in x(t)2x(t8), one can see more directly that th
domain-wall energy has, in this order of approximation,
same analytical form as that obtained by Kolomeiskiiet al.
for a domain wall in a ferroelastic material and as that u
by Hazareesing and Me´zard in the study of the problem re
ferred above~provided one neglects the contribution of th
03160
e

-

.

e

d

line tension in our case!. Therefore, if one takes this approx
mation, one can, following Robbins and Joanny and a
Kolomeiskii et al. @32,12#, use a Imry-Ma type of argumen
@3# to show that the expected value ofz is 1/3, this behavior
of g(t) being valid for lengthsL much larger than the Larkin
length @33# j, which is given in our problem byj

;e4B 3/m̃2D. WhenL@j, we can disregard the line tensio
contribution to the action, since this energy term scales w
L21. However, at short length scales compared toj, this
term cannot be disregarded, since it gives anv2 contribution
to the denominator of the Green’s function appearing in E
~44!. This contribution gives rise to a behaviorg(t);t, at
length scales<B, as can be seen from the Me´zard-Parisi
solution @7,34#. Having in mind such behavior ofg(t), we
can write Eq.~43! as

f ~v!52e2E
0

j

dt@12cos~vt!#F 1

2pg~t!

2
t

4Apg3/2~t!
et2/4g(t)erfcS t

2g1/2~t!
D G

2e2E
j

`

dt@12cos~vt!#F 1

2pg~t!

2
t

4Apg3/2~t!
et2/4g(t)erfcS t

2g1/2~t!
D G . ~48!

The integrand in the first term is regular at smallt @due to
the behavior ofg(t) at smallt# and its contribution is un-
important if vj!1, which is the set of wave vectors tha
determines the roughening exponentz. In the second term
we can use, ifB!j, the asymptotic expansion for erfc(x).
We obtain, omitting the regular contribution of the first term

f ~v!'2
e2

p E
j

`

dt@12cos~vt!#F 1

t2
2

6g~t!

t4
1•••G ,

~49!

where the dots stand for terms of ordergn(t)/t2n12, with
n>2. Now, sinceg(t);t2z with z,1, then the second term
in Eq. ~49! is much smaller than the first one and the omitt
terms are of higher order. We can, therefore, keep only
first term and we obtainf (v)'2(e2/2)uvu, i.e., the zeroth-
order approximation forf (v) is a good one. The validity of
this approximation of course relies on the fact thatz,1, but,
as we shall show below, the result obtained indeed coinc
with the Imry-Ma argument, i.e.,z51/3. If we now substi-
tute this result forf (v) in Eq. ~46! we can perform the
integral~with V050) and obtain a closed equation forq(u).
This equation reads

q~u!5S m̃4D2s1/2

~kBT!3 D 1/3

r 1/2~u!F e2

4As

r 1/2~u!

@q#~u!

2arctanhS 4Ar ~u!s

e2 D G21/3

, ~50!
8-7
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wherer (u)5(e4/16s)2@q#(u). Notice thatr (u) is positive
at small u since @q#(u)→0 when u→0. If r (u) becomes
negative, this equation is still valid, provided that we wr
r 1/2(u)5 i ur (u)u1/2 and analytically continue Eq.~50! to
imaginary values. This equation relates@q#(u) to q(u), with
@q#8(u)5uq(u) by definition, through a transcendent
function and cannot be easily solved numerically. It redu
to the equation discussed by Meza´rd and Parisi@7# if one
takes the value of the dipolar interaction to zero~i.e., e2

50) and to the equation discussed by Hazareesing
Mezárd @9# if one takes the line tension to zero~i.e., s50).
In these two cases, this equation reduces to trivial algeb
equations, which can be easily solved. In the first case,
obtainsz51, which coincides with the exact result of Zhan
@6# and in the second case one obtainsz51/3, as pointed out
above. In our case, we can nevertheless obtain informa
regarding the behavior ofq(u) at smallu directly from Eq.
~50!. Performing some algebraic manipulations with Eq.~50!
and using the identity arctanh(x)5 ln@(12x)/(11x)#, one can
show that

lim
u→0

@q#~u!q23~u!5
4~kBT!3

m̃4D2e2
, ~51!

which shows that, since@q#(u)→0 when u→0, then one
must haveq(u)5Au1/21O(u1/2) for small u whereO(u1/2)
indicates terms of order higher than 1/2 andA
5(m̃4D2e2/12(kBT)3)1/2. Likewise, one must have@q#(u)
5(1/3)Au3/21O(u3/2), whereO(u3/2) indicates terms of or-
der higher than 3/2. This coincides with the result obtain
by Hazareesing and Meza´rd @9#, although their solution is
valid in a finite interval around 0. In order to obtain a diffe
ential equation valid;uP@0,1#, we differentiate Eq.~50!
with respect tou. We get

q8~u!50 ~52!

or

r ~u!52
1

2
uq~u!1

e2ur2~u!

12As@q#2~u!
S m̃4D2s1/2

~kBT!3 D 1/3

3F e2

4As

r 1/2~u!

@q#~u!
2arctanhS 4Ar ~u!s

e2 D G24/3

.

Now, the second equation can, with the aid of Eq.~50!, be
written in the following form:

@q#3~u!5n@q#2~u!1
1

2
uq~u!$@q#2~u!2hq3~u!%,

~53!

with n[e4/16s andh[e2(kBT)3/6m̃4D2s. This equation is
also valid whenr (u),0 without the need to perform a
analytic continuation, which is an advantage with regard
Eq. ~50!. Now, the physical dimensions ofn andh are, ac-
cording to these definitions, given by@n#5 j m23 and @h#
5 j21 m3 ~in mks units!. Furthermore, sinceS0 has the di-
03160
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mensions of an energy and bothx(t) andt have the dimen-
sions of a length, it is also easy to see that the dimension
q(u) are the same as those ofn. If we define z(u)
5*0

udvq(v), one hasq(u)5dz/du and @q#(u)5u(dz/du)
2z(u). Substituting these equations in Eq.~53!, one obtains
a differential algebraic equation forz(u). This equation reads

huS dz

duD 4

1S u
dz

du
2zD 2S u

dz

du
22~z1n! D50. ~54!

Sincez(u) and n have the same dimensions, it is useful
write z(u) in terms of a dimensionless functionz(u)
5nx2l (x), wherex54u3/4/3a1/4 is a scaling variable with
a5hn5e6(kBT)3/96m̃4D2s2 being a dimensionless con
stant @35#. In terms of l (x), the condition ~51! becomes
l (0)51/25/2, since thex2 power corresponds to au3/2 behav-
ior at smallu. Substitutingz(u) in terms ofl (x) in Eq. ~54!
we obtain the following differential algebraic equation f
l (x):

@xl8~x!12l ~x!#41S 3

4
xl8~x!1

1

2
l ~x! D 2S 3

4
x3l 8~x!

2
1

2
x2l ~x!22D50, ~55!

which does not contain any dimensional parameters. The
vantage of this equation with regard to Eq.~53! or Eq.~54! is
its scaling form, which means that once we have obtained
scaling functionl (x), one simply has to substitutex by its
expression in terms ofu to obtain z(u) for all n and a.
Furthermore, since we have to solve Eq.~54! for uP@0,1#,
this means that we need to solve Eq.~55! for x
P@0,4/3a1/4#. Whena is large@36#, this interval becomes a
small interval around 0 and we can linearize Eq.~55!, by
writing l (x)51/25/21m(x). Substituting this equation abov
and keeping only terms linear inm(x) andm8(x), we obtain
the differential equation

2S x

8A2
1

3x3

512D m8~x!1S 1

4A2
2

3x2

256D m~x!5
x2

1024A2
,

~56!

with solution

m~x!5
8Bx22128x2ln x23A2x4

8~32A213x2!2
, ~57!

where B is an arbitrary constant. Since the solutionq8(u)
50 can be valid in a subinterval of@0,1#, the general solu-
tion of Eq. ~42! is

q~u!5H z8~u! if u,uc ,

z8~uc! if u>uc ,
~58!

wherez(u)5nx2l (x) with l (x) being given by the full so-
lution of Eq. ~55! in the general case or simply by the line
approximation
8-8
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l ~x!5
1

25/2 1
8Bx22128x2ln x23A2x4

8~32A213x2!2

in the case of largea. The values of the arbitrary integratio
constantB appearing inl (x) and ofuc can be determined by
substituting the expression forq(u) obtained fromz(u) in
Eqs. ~42! and ~50!. We have solved Eq.~55! numerically
using theMANPAK algorithm @37#, available at netlib.org. A
comparison between a polynomial fit of the numerical so
tion and the linearized solution~57! is shown in Figs. 1 and
2, which shows the correctness of this solution at smalx.
However, even in the case of largea, where the linear ap-
proximation can be used, we still need to solve the sys
composed by the transcendental Eqs.~42! and~50!, and one
would have to resort to a numerical approach. Neverthel
since the behavior ofg(t) at large length scales is sole
determined by the behavior of@q#(u) at smallu, it is still
possible to show, following Hazareesing and Me´zard@9#, that
the roughening exponentz51/3. In order to do that, one ha
to notice that@q#(u)51/2nx2l (x)13/4nx3l 8(x) for u<uc ,
@q#(u)5@q#(uc) for u.uc . Substituting this result for

FIG. 1. Linearized~continuous line! and numerical~dashed line!
solutions of Eq.~55! for the same initial~and arbitrary! condition
l (1)50.180 95. In the case of the numerical solution, theMANPAK

algorithm was iterated down tox50. It is seen that the two solu
tions converge to one another close tox50.

FIG. 2. Left-hand side of Eq.~55! evaluated for the linearized
~continuous line! and numerical~dashed line! solutions. It is seen
that the linearized solution gives better results close tox50 but that
it deviates significantly for larger values. The numerical solution
seen to oscillate around zero. Note that the scale of the plot is 126.
03160
-

m

s,

@q#(u) in Eq. ~44!, we obtain for smallv, using l (0)
51/25/2 andl 8(0)50, which follow from the linear approxi-
mation, the result

g̃~v!5C@sv21~e2/2!uvu#25/31•••, ~59!

where the dots indicate terms that diverge less strongly
small v and whereC is a numerical constant. From thi
result and from the definition ofg(t), one immediately con-
cludes thatz51/3, in agreement with the Imry-Ma argume
of Robbins and Joanny. The determination of the crosso
behavior ofg(t), at length scales comparable withj as well
as the determination ofj itself ~the Imry-Ma argument just
gives the order of magnitude! requires, as stated above, th
solution of the system of transcendental equations~42! and
~50!.

VI. CONCLUSIONS

We have obtained an expression for the elastic energy
Néel domain wall in a thin ferromagnetic film in the pre
ence of dipolar interactions and a quenched random fi
beyond the quadratic approximation for the dipolar ener
Using the replica trick and a variational ansatz, we ha
obtained a set of self-consistent equations for the Gre
functions of the displacement field of the domain wall. The
equations were solved analytically in the case of tw
dimensional dipolar interactions by making a quadratic
proximation for the dipolar energy, which was justified o
the basis of the different behavior of the domain wall
different length scales. The problem is then analogous to
one of a domain wall in a ferroelastic as studied by Kolo
eiskii et al. and to the one of a liquid-gas contact line in
disordered solid, as studied by Hazareesing and Me´zard. We,
therefore, obtain a valuez51/3 for the roughening exponen
of the domain wall.

From these calculations, we have obtained some imp
tant results. First, we were able to represent the dipolar
teraction in the domain-wall Hamiltonian as the interacti
of the quantum particle with a annealed gauge field. Also
111 dimensions, one can integrate out such a field, leav
us with a polaronlike quantum Hamiltonian. Second,
have shown that a generalized replica symmetry break
ansatz allows for the treatment of this problem. Note that t
generalization leads to relatively simple equations in o
case, since the nondiagonal part of the self-energy in rep
space is still wave-vector independent, which is due to
short-range correlated nature of the random field. The tr
ment of long-range correlated disorder is, on the other ha
a much more complicated problem@38#. Finally, we were
able to justify that taking the quadratic approximation f
two-dimensional dipolar interactions is sufficient to obta
the correct value of the roughening exponent within this
proximation.
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APPENDIX: COUPLING CONSTANTS AND THEIR
PHYSICAL UNITS

Here we collect the definitions of the different couplin
constants used in this paper, together with their dimens
in the mks system, denoted by@ #. One uses the units joul
(j5kg m2 s22), ampere~A!, and meter~m!. The ‘‘funda-
mental’’ physical constants are the magnetic permittivity
the vacuumm0, the Bohr magnetonmB , the Lande´ factor for
the systemgL , the numerical value of the spinS, the strength
of the exchange interaction between nearest neighboJ
~given in j!, the amplitude of the random field correlationsD
~given in A2 m22) and the lattice constanta. Furthermore, in
the case of a SC/FM/SC heterostructure, one also need
London penetration depth of the superconductorlL and its
relative permittivitym r . From the units of these quantities
the mks@39#, one then determines the dimension of the co
pling constants appearing below.
A.

s
a

lar
ti
v

ef
ob
lu

03160
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s5
Jp2S2

a
@s#5 j m21, ~A1!

m̃5
m0mBgLpS

a
@m̃#5 j A21, ~A2!

e2d
2 5

m0mB
2gL

2p2S2

2m rlLa4
@e2d

2 #5 j m22, ~A3!

e3d
2 5

m0mB
2gL

2p2S2

2a4
@e3d

2 #5 j m21, ~A4!

n5
e2d

4

16s
@n#5 j m23, ~A5!

h5
e2d

2 ~kBT!3

6m̃4D2s
@h#5 j21 m3, ~A6!

where e2d
2 is the value of the coupling constant for two

dimensional dipolar interactions~the case treated above! and
e3d

2 is the value for three-dimensional dipolar interactions
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