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Domain wall roughening in dipolar films in the presence of disorder
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We derive a low-energy Hamiltonian for the elastic energy of aldemain wall in a thin film with in-plane
magnetization, where we consider the contribution of the long-range dipolar interaction beyond the quadratic
approximation. We show that such a Hamiltonian is analogous to the Hamiltonian of a one-dimensional
polaron in an external random potential. We use a replica variational method to compute the roughening
exponent of the domain wall for the case of two-dimensional dipolar interactions.
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I. INTRODUCTION presence of dipolar interactions. Although one expects the
RG calculations to provide a qualitative understanding at low
The roughening properties of elastic manifolds in thedimensions compared to the upper critical dimensi@n (
presence of quenched disorder is a well studied problem. The 3 in this cas it is still questionable to what extend one
subject of study is usually the asymptotiong-distancgre-  can perform such analytical continuation using just the one-
gime in which one wishes to compute the roughening expotoop results. Furthermore, the results of Emig and Natter-
nent{ of the D dimensional elastic manifolgescribed by a mann were based on a series expansion of the dipolar energy

displacement fieldp(x)] defined by [13,14 which meant that, in the absence of disorder, the
Hamiltonian describing the low-energy degrees of freedom
{[p(x)— p(x") ]2 =|x—x"|%, (1)  of the domain wall was quadratic in the domain-wall dis-

placement field, i.e., the random potential is the only source
wherex is the position vector in th®-dimensional configu-  of nonlinearity in the problem. One still needs to justify that
ration space and where the brackets represent an averaggéch approximation is sufficiefls].
over thermal fluctuations and the overline an average over Having in mind such difficulties, we wish to discuss the
the realizations of the quenched disorder. Obviously, theroperties of a one-dimensional domain wall in a two-
study of the crossover between short distances, where ttdimensional ferromagnetic film, in the presence of dipolar
thermal fluctuations dominate and the long-distance behavnteractions and a short-range correlated random field, where
ior, which is determined by the disorder, is also of interestthe dipolar interaction is treated beyond the quadratic ap-
Among the methods applied to the study of this problem argproximation. We wish to check whether it is still possible to
the use of Imry-Ma type of argumer{ts—3], the mapping of map such a problem to(aodified Burgers equation, as was
one-dimensional interfaces in two dimensions to the noisylone by Huseet al.[5] for the case of random-bond disorder
Burgers equatiorj4], which yields an exact result for the and by Zhand6] for the case of random-field disorder, in the
roughening exponerb,6], variational approaches involving absence of long-range interactions. Such a mapping was
replica averaging and replica symmetry breakifig9], and  achieved because one can map the line domain to the world
functional renormalization groufRG) calculations[10,11.  line of a quantum particle in 1 dimensions. The free en-
The role played by long-range interactions does not seem tergy of the line domain can then be shown to obey a Schro
be so well understood, although it follows from the one-loopdinger equation in imaginary time in the presence of a ran-
functional RG results of Emig and Nattermafit] that in  dom potential. A Cole-Hopf transformation can then be used
the important case of a magnetic domain wall in the presence convert this equation into a noisy Burgers equation with
of long-range dipolar interactions, one simply needs to readditive noise, for which the stationary distribution is known
place the expansion parameter4—D by e=3(3—D)/2  in one-dimension[16]. This allows one to compute the
(whereD is the dimension of the manifoldn the expres- roughening exponent. In our case, the presence of the dipolar
sions for the critical exponents obtained in the absence dhteraction does not allow one to write the energy of the
dipolar interactions, in order to account for the presence oflomain wall as an action for a single quantum particle, but
these interactiongl2]. In particular, if one applies this result instead we obtain an action for a quantum particle that inter-
to the case of a line domain in a thin magnetic fild ( acts with an annealed “vector potential,” whose propagator
=1), the effective expansion parameter dés-3 in both is determined by the dipolar propagator. I#r 1 dimensions,
cases, which means that in this case and to one-loop ordes,gauge transformation allows us to substitute the vector po-
the critical exponents obtained are the same in the absence @ntial by a scalar one, which can then be integrated out,

leaving us with an action similar to the action of a polaron as

considered by Feynmdr 7,18, i.e., the dipolar interaction

*Email address: santos@hmi.de introduces a “self-retarded” interaction of the particle with
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of Feynman[7-9], in which one introduces replicas of the Il. ENERGY OF A SINGLE DISTORTED DOMAIN WALL

system in order to average the free energy of the domain wall IN A TWO-DIMENSIONAL XY MODEL WITH
over the realizations of the random field. Using the hierar- DIPOLAR INTERACTIONS AND IN A RANDOM FIELD
chical replica symmetry breakinRSB) ansatz of Parisi We consider a e (i.e., 180°) domain wall in a thin

[19], we were able to derive a set of nonlinear equationg,yq_gimensional ferromagnetic film in the presence of dipo-
whose self-consistent solution yields the long-distance phySz; interactions and a short-range correlated quenched ran-
ics of the problem within the realm of this approximation. g4om field. The magnetization is in the plane of the film. In
With this method, we are able to treat two different situa-the straight domain configuration, the wall is oriented along
tions. The one of a thin ferromagnetic film grown on athey axis and the center of the wall is locatedxat0. The
nonmagnetic substrate, in which the dipolar interactionthermal and random field fluctuations give rise to deviations
has the usual three-dimensional form, and the one of a thiof the domain wall from its straight configuration, i.e., at a
ferromagnetic film grown between two type | super-given positiony, the center of the domain is displaced from
conductors, i.e., the case of a superconductor/ferromagnet=0 to x(y) (we neglect overhangslin this case, Eq(1)
superconducto{SC/FM/SQ heterostructure. We have shown reduces to

elsewherd20] that in this case the dipolar interaction has a

two-dimensional form at small wave vectors, coming from (Ix(y)=x(y") 1P =|y—y'|%. 2

the renormalization of the magnetic energy due to the Meiss-

ner effect in the superconductors. Although we were unablgp,g distancely—y’| is considered to be very large with
to obtain an analytic solution of the variational nonlinear egpect to the lattice spacing and to the length over which the
equations, we were able to justify that in the case of twoyandom field is correlatedsee below In the absence of
dimensional dipolar interactior(se., for the SC/FM/SC het- dipolar interactions, one can, as stated above, through a map-
erostructurg the quadratic approximation is indeed ad-ping to a Schrdinger equatioi6], show that/=1.

equate. This case is not only easier to treat analytically, itis In order to determine the elastic energy of the domain
also more interesting than the case of three-dimensional divall, we consider the underlying system of ferromagnetic
polar interactions, for which one expects the dipolar interacspins to be in a square lattice with lattice constanand

tion to be irrelevanisee above Therefore, we restrict our overall dimensionsL, XL, . The system has antiperiodic
discussion to the case of two-dimensional dipolar interacboundary conditions along thedirection(in order that there
tions in this paper. Furthermore, we can also show that in thiés a single domain wall in the systerand periodic boundary
case, if one works within the quadratic approximation, theconditions along thg direction and is at finite temperatufe
elastic energy of the domain wall has the same analyticaPuch system is described by(@assical XY model Hamil-
form as the energy of a domain wall in a ferroelastic materiatonian, with dipolar interactions and in a random field,

as studied by Kolomeiskit al. [12] and also of the energy

of a liquid-gas interface in a disordered solid, as studied by 1 G S-S
Hazareesing and Mard[9]. In both cases, one obtains, in  H=— > E JijS'Sq—ME hi- S+ Py E —
two dimensions, a value of 1/3 for the roughening exponent. \BY ! i\ [Ri—=Ry|
This is indeed the value that we obtain for the roughening DAL _pyl.c

exponent in our problem. It should be nevertheless noticed _ N(R—R)-SR-R)-§ —DY (92 @)
that these three problems, though mathematically similar |Ri_Rj|n+2 i '

have a different physical origin and motivation.

The structure of this paper is as follows. In Sec. Il, we gy the case of two-dimensional dipolar interactidins., for
derive a low-energy Hamiltonian describing thedNdomain  the SC/FM/SC heterostructrehe constantg. and G are
wall elastic degrees of freedom. This Hamiltonian can begiven in the mks system byu=uougg, and G
interpreted as the action in imaginary time of a quantum= (/47w N )(g, 1g)? Whereu, is the magnetic permi-
particle in 1+1 dimensions. In Sec. I, we use the replica ttivity of the vacuum,ug the Bohr magneton, ang, the
trick to average over the random field realizations, whichlLandefactor of the spin system. The constaits and u,
generates a many particle nonquadratic action. In Sec. IV, ware, respectively, the London penetration depth and relative
introduce a generalization of the variational ansatz ofétd  magnetic permittivity of the superconductor. In this case,
and Parisi which allows us to consider the effect of the short=2. In the case of three-dimensional dipolar interactions,
range correlated disorder and of the nonlocal dipolar term iwhich we will not considerG = (u/4m)(ug 9.)? andn is
the many particle action. One obtains a set of nonlinear equaqual to 3. The quantitie}; andD have the dimensions of
tions that have to be solved self-consistently. In Sec. V, weenergy[21]. The field h; is a random field with Gaussian
perform the analysis of these equations in the particular caseorrelations, i.e.h{ h-ﬁzAij 5*F. In order to stabilize the do-
of the hierarchical replica symmetry breaking solution of Pa-main wall, we have added to the Hamiltonian above an easy-
risi and we discuss the validity of the quadratic approxima-axis anisotropy term, along theaxis, represented by the last
tion for the dipolar term in these equations, which permits taterm in Eq.(3).
determine the roughening exponent of the domain wall. Fi- For a straight Nel domain wall, the spin configuration
nally, in Sec. VI, we present our conclusions. has the form
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S'=Scos¢(X), (4) . f=/~LJLYI2

x(y)
ay [ advicy). 13
—Ly/2 0

S/=Ssing(x), (5)

wherei is the site label and wheré(x) goes from—m/2 ~ Where p=pougg, mS/a and h’=h/a [24]. This formula
when x— —L,/2 to m/2 whenx—L,/2, with S being the €an be made plausible if we consider instead a constant field

value of the spin. The functiosh(x) changes its value from @ongy. It can also be easily seen from EQ.)) that the
— /2 to 7/2 in a region of widthw aroundx=0. Sincew is easy-axis anisotropy term QOes not contribute to the defor-
typically of the order of tens of nanometd22] and we are Mation energy of the domain wall. .
only interested in the long-distance properties of the domain SINce We wish to CC_’”,)PU}thhe partition function, we have
wall, we can writedé(x)/dx=75(x). If the center of the (O consider the factoe "die™", whereHy;, is given by
domain wall is displaced from; =0 to x;=x(y;), the spin
configuration becomes Hdip:% Eq FA(A-S(a-S_g), (14)
Si'=Scosd(x;—x(y)), (6)
y _ where V=L,L, is the area of the sample. For two-
S/ =Ssind(x;—X(y;)). (7)  dimensional dipolar interactionsg= (uq/2,\ ) (9. 1g)>
and F(q) = 1/q? [20]. For three-dimensional dipolar interac-
tions,g= (uo/2) (9. ug)? and F(q) = 1/q. Thus, by consider-
ing the different dipolar kernel$(q), one can treat the two
fifferent cases.

Using a Hubbard-Stratonovich transformation, we write
efHdip/kBT as

We wish to compute the partition functionZ
=Tr(e™*"%sT), where SH= 0Hexct SHyt+ SHgip is the
energy difference between a configuration described by th
displacemenx(y) and the straight domain configuration. We
define the discrete Fourier transforms

S¥=>, Ste ok ) 1

TR e = | DAlep( " igT 2 A DA
x(ay) = x(y;)e” W, 9 Vg

s +m% (CI'Sq)A—q), (19

whereq belongs to the first Brillouin zone. We will approxi- . o
mate the sums ovérby integrals, according to the formulas, Where N is a normalization factor. We can now show that

1 j 1 7S (Ly/2 . _odx
$-ifen oo w ST gy
R a2 i @ Sy a? J-Le y dy’ 19
valid for a square lattice. It can be shown that thesitive from which it follows that
contribution to the exchange energy coming from the
domain-wall deformation is given to second order in the dis-

. i 7S [Ly2 dx
placement field, by13] - S)A =T Jy dv A 1
o v @SA | VAW, (17

v
Hexc= — oNa? zq: [J(ax,ay) = I(Ax,0) Ix(ay)x(—ay) and one can see that there is no contribution to the dipolar

energy wherx(y)=const. The partition function of the do-
w2 ’ main wall's degrees of freedom involves the functional inte-
2L,a % Gyx(Gy)x(—qy), (D gration of the Boltzmann facta**/¥&T, over the space of
functionsx(y).
whereN=L,L,/a? s the total number of sites and where we ~ We shall now make a change in our notation. We will
have expanded(q)~J,—Ja?g®. In real space, Eq(ll)  write

reads
dx .
1 (L2 [dx\? y—=7 X(y)—=X(7), d_y_’X(T)’
MEXC_EUJL),IZ y @ ) (12
which has the same form as the kinetic part of the action of N = WS‘/E
. . . . . qy (’)mv € 2 . (18)
a particle of massr in one dimension, withr=72JS%/a a

being the line tension of the domain wall. The contribution
coming from the random field can be shown to be equal tarhe subscriptn stands for the fact that the wave vectarg
[23] are discrete, due to the periodic boundary conditions along
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7 (y). If we use this notation in the formulas above, we have, 1

collecting all the factors, the following expression for the

partition function:

Z=N f Dx(7)DA(Qy, w)e” ke,

where the actiors is given by

1 (L2 . ~ (L2 x(n)
S=—o‘f d7'X2(7')+,uf de dxh(x,7)

2" )Ly ~Ly2 Jo

—iefLy/2 drA(X(7), 7)X(7)
—Ly/2
1

+
2V 4

X 1@m

> Ay, 0m)F X Gx, 0mA(— Oy, — o

L2 Ly/2
S= —O'J dTXZ(T)-i-f d7V(x(7),7)
27 )L ~Lyi2
e’ w? L2 L2
+qu —gf(qx,wm)f dTJ dr’

(19) < ®Om —Ly2 )Ly

Xexp[—igu[X(7)=X(7")]—ion(T—7")}. (23
This action can be used to compute the roughening exponent
of the domain wall. Equatiorf23) also shows that, apart
from the interaction with the- dependent random potential
V(x,7), the actionS is analogous to the action of a one-
dimensional polaron, as written by Feynmdr7,18.

However, in order to compute the roughening exponent,
one has to determine the following quantity:

T i R

((x(1)=x(7"))?)

(20) f Dx(7)e” SkeT

(24)

This is the action of a single quantum particle i1 di-

mensions, with “mass’c and “charge”e, at “inverse tem-
perature” L, and with a “Planck constant” equal tégT.
Such particle is in a external random potenth(x, 7)
=uf3dx'hY(x',7) and interacts with a “vector potential”
A(Qy,wy) [25] characterized by a propagator equal to
F(9x,wm) - This result belongs to the well known class of

which involves determining the average of the distribution of
quenched disorder over a quotient. This type of averaging
places the same problem as when one needs to average over
the free energy of the system, i.e., one needs to determine the
averagen Z, instead of simply averaging over the partition
function Z. This can be seen by including a source field
Foupled tox(7) in Z. The two-point correlation function

mappings of two dimensional problems of classical statistical .

mechanics to +1 dimensional quantum problems. Now,
since one has periodic boundary conditions alongthg)

axis, the following identity holds:

J 7 drAG(r), D7) = — J R
—L,/2 —Ly/2

Y

fX(T) JA(X',T)
T dx'——
0 aT

appearing in Eq(24) can be computed frorm Z by differ-
entiating it with respect to the sources and taking these
sources to be zero.

Ill. THE AVERAGE OVER DISORDER: REPLICA TRICK

; We need to perform the average over the random field

hY(qy,w), which obeys a Gaussian distribution with a sec-

(21
ond moment equal to

which corresponds to a gauge transformation of the action _ 3 N
[26]. The use of this identity eliminates the dependence on(h¥(dy,wm)h’(dy,wp))= —A(0x,@m) g +q’ 00w, +o’ 0-
a X X' m m’

the “velocity” x(7) in all terms of Eq.(20) except the first

one. The actior8 now reads

1 (L2 . Ly/2
S:—O'j dTXZ(T)'i‘f d7V(x(7),7)
12

2 )Ly L,
(L2 (1) GA(X',T)
+ie dr dx'——
-L2 0 ar

1
+ —

X 1 @m

2V 2 A(arwm)f_l(qx1wm)A(_QX-_‘U
q

(25

In order to perform the averaging over disorder in the free
energy, one introducesdistinct copiegreplicag of the sys-
tem[27] and makes use of the identity

n

In Z=lim
n—0

(26)

One performs the disorder average o€l for integern and

m)- makes the analytical continuation te—0. One obtains

(22)

?:f [T Dx.(r)e SR/keT, (27)

We can now integrate out the fiel(qy,w,,), obtaining an

action entirely in terms ok(7) alone. We obtain

where the “replicated” actiorBg is given by
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1 Ly QU are to be chosen appropriately. We also dentb be
SR=§U§ LL dr{x3(7) +Q5xX3(7)] translationally invariant whef,— 0. This gives rise to the
constraint
~2
pn A(qx,O)ij’2
d7coggyXa( 7))
keTL, &3, Ly e Qo=—2> QY. (30)
eZ 2 L /2 Ly/2
2V > qx,wm)J f dr’ It can be shown that the normalized generating function for
a0 ®m q Lyl2 the correlation functions of such a quadratic action, is given
H ! H ! 2
X exp{—iQ,[Xa( )~ Xa(7') ]~ 17— 7)) by (28]
~5 L /2 Ly/2
I A(gx 'wm)fL 2 fL 2 Zu[ 7a(7)]= eXp( 1/2(kBT)22 f f " dr
kBTV a, b Oy @ L /2 L /2 L /2 Ly/2
Xexp{ =i Xa(7) =Xp(7") ] —iom(T—7")}, (28 X 7a(1)Gap(7— T’)nb(T’)>, (31

and where the last term represents the inter-replica interac- o _ .

tion, due to the presence of the random potential. We havehere G,p(7— 7)) =(Xa(7)X,(7')) is given in terms of its

included in S; the effect of an applied fieldh?,(x)  Matsubara modes, by

=(0Q%/)x. This term gives rise to the second term in the n o Ao a4

action, which is a harmonic potential. The presence of this Gap=keTlo(wpl + 09 =Q .y , (32

term is necessary to guarantee tBatis bounded from be-

low, given that the last term of E¢28) comes with a nega- wherel is the unit matrix in replica space arfd? is the

tive sign.Q, can be set to 0 at the end of the calculations. diagonal matrix with elements equal & . The free energy
as computed from the trial actiog[0], with the sources

IV. A VARIATIONAL ANSATZ FOR THE FREE ENERGY: 77a(7) equal to zero, can be shown to be equal to
VARIATIONAL EQUATIONS

kgT U
The action(28) cannot be integrated exactly. Therefore, Fo=C'— - > In{(1kgD)[ocwh+(eO?~Q™) 1},
we need to develop an approximation scheme. We shall fol- e 33)
low Mézard and Paridi7] and Goldschmidf8]. We choose a

trial quadratic action of the form o o . A .
g whereu indicates the basis in which the mateiX)?— Q™ is

diagonal. One now uses the Feynman inequality Foer

1 L2 I <
Sol 7a(7)]1= 502 f dr[X3(7)+ Q2X3(7)] —kgT InZ", which states that
a 7Ly/2
1 L2 Ly/2 F<F,ar=Fot(Sr—So[0])o, (34
52 J drf A7 Xa(7) Qap(7— ')
ab Jotyz JoLyf2 where the average on the right-hand side of B4) is over
, Ly/2 the trial quadratic actior5,[0]. Note thatF=—kgTIn Z
XXp(T )—g f_L /2dT7Ia( T)Xa(7), (29) =lim__ F/n. One obtains foF ., the expression
y

where we have included a source fiejgl 7), which is useful Fuar ~ 2 2 Am

in the calculation of correlation functions. The' kéd-Parisi |_y =C'- 2|_y mZM In{(1kgT)[owpy T(e0?=Q )ult
ansatz has been generalized by including a matrix function

Q.p(7—7'), with a nontrivial dependence on- 7', neces- 2 2 2 A5
sary to take into account the effect of the nonlocal dipolar + 2_|_y g] (Do~ Q){(1keT)[ oyl + (o2
interaction. In the Meard and Parisi caseQ,,(7—7')

=Q.pd0(7—7'), since they considered only short-range cor- _Am 1 m 9 Ao
related disorder. Goldschmidt has considered several differ- Q™ Jtaat 2L, a;m Qapl (1kgT)[gwpl + (o)
ent forms for the kernéD,,(7— 7'), all of which is nonlocal
in 7— 7', and which are able to account for the problem of a R w?n A(0y,0) 2
guantum particle in a disordered static potential and for the QM I}tpat E > € (1/2)9Gaa(0)

. . . kBTLX a,qx q
related problem of a polymer in a random potential with x
long-range correlated disordésee below. Since Q,p(7) 1 L2 022
=Qap(7+Ly), we can represer@@,,(7) in terms of Matsub- + v 2 f g dr( > F(0x, ) Sap
ara mode®,p(7) = 1L, 2,,Qn.e'“m". The values o2 and abay,e J-Ly/2 X
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w? Agy, o)

. 1,
exp —iw7— 5 Qs [Gaa(0)
qs 2

+Gpp(0) — 2G,p( T)]], (39

where the following identities, valid for a quadratic action at
zero sources,

~itxXa(7)y = @~ (1/2)3;Gas(0)
(e Jo=¢€
and

(e 10X~y = expf — 12 G 44(0)
+Gpp(0) = 2Gp(7) ]}

were used. Following Hazareesing and 2ded [9], we

PHYSICAL REVIEW B5 031608

V. ANALYSIS OF THE VARIATIONAL EQUATIONS
FOR A TWO-DIMENSIONAL DIPOLAR
INTERACTION: HIERARCHICAL REPLICA
SYMMETRY BREAKING

One needs to take the limit—O0 in the self-consistent
equations derived above. This implies dealing with the ma-
trix structure of the equations in this limit. One cannot do
this in general. However, there is a particular parametrization
of these matrices, due to Parigi9], which is sufficiently
general for our purposes. This is the so called hierarchical
RSB. The diagonal elements of the mat@y, (with dimen-
sionsnXxXn wheren is arbitrarily large are taken to be all
equal toq and the off-diagonal elements are taken to be
equal togg. Qg is then partioned in block-diagonal subma-
trices, the elements @, outside these blocks keeping the
value gy and the elements inside the blocks taking a new
valueq; (except the diagonal elements that keep their value
q). The procedure is repeated in an equal form for every
diagonal block submatrix, the off-diagonal elements of these

choose the random field to have anisotropic correlationsg;,pmatrices keeping the valge and the elements inside the

A(qx,wm)=Ae‘1’2q§’32, with correlation length3 along x
[29,30 and we choose the two-dimensional form of the di-
polar kernel, i.e./(qy,wm) =1/(q2+ w2). We have to mini-
mize Eq.(35 with respect to the free paramete@s) and

diagonal subblocks taking the valup. This procedure is
repeated ad infinitum” The multiplication rules obeyed by
these hierarchical matrices are analytically continued to
—0. The off-diagonal elements ¥, are then parametrized

Q2. Such procedure gives the following self-consistentby a functiong(u),u<[0,1] and the diagonal elements are

equations:
03=05 £7An [B+G,a(0)] M2 (36)
a 0 \/ZKBT aa )
Qap=Qapt fadan, M#0 (37)
with

-2

ng=#[32+ Gaal(0) + Gop(0) — 2G4(0)] 2
B

(38)
(a#Db),
m ) Ly/2
fa——e fo dT[l—COE(me)] m
T 7'2/47 (7) ( T )
-5 € aalDerfcl ————| |, (39
4\myii(7) 2y3a(7)

with QY given by Eq.(30) and where y,,(7)=G,4(0)
—G,a(7) [31]. We have approximated the sum oegrby an

integral, a procedure that becomes exact in the thermody-

namic limit, and erfck) is the complementary error function.

These equations constitute a closed nonlinear system that has

to be solved self-consistently in the limiit—0. We consider

parametrized by the numbgr The constraint30) takes the
form

- 1
q=f0duq(u), (40)
and one can show that the matricég}, are also param-

etrized by a functiog™(u) and byg™ that parametrizes the
diagonal elements. In the thermodynamic limjt="L,— o,

wn— o, J"—9g(w), andg™(u)—g(w,u) and one gets, us-
ing Egs. (36)—(39), the following relations, wherey(r)
[g(7,u)] is the Fourier transform af(w) [g(w,u)],

~2
A2_2_ poAn 2. Ty -12
Q 0 ’_277kBT[B +9(7=0)]" "4 (41)
2
= B2+ 2la(7=0)— =0, 71/2,
q(u) kaT{B+ [9(7=0)—g(7=0u)]}
(42
_ 22| _
flw)= eJO drfl-coqwT)] Zy(7)
T P f( 43
R PrET |

and wherey(7)=g(7=0)—g(7). One sees from Eq41)

the solution of these equations in this limit in the next secthat whenn—0, QZ:Q(Z,. The functionsg(w) andg(w,u)

tion.

are in turn given by
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kaT q(0) line tension in our caseTherefore, if one takes this approxi-
9(w)= 5 32 ( T mation, one can, following Robbins and Joanny and also
o0+ Q5 —f(w) o0+ Q5 —f(w) Kolomeiskii et al.[32,17], use a Imry-Ma type of argument
[3] to show that the expected value dfs 1/3, this behavior
4 fld_v [al(v) (44) of y(7) being valid for length& much larger than the Larkin
002 o(0?+Q3)—f(w)+[ql(v)] length [33] &, which is given in our problem by¢
~e*B3/u?A. WhenL> ¢, we can disregard the line tension
(o.) kgT ( q(0) contribution to the action, since this energy term scales with
glo,u)= 2.2 2. 02 _ L~ 1. However, at short length scales comparedétahis
o(0™+0p) = f(w) | o(w™+ Q) ~f(v) term cannot be disregarded, since it givess&rcontribution
udp [q](v) to the denominator of the Green’s function appearing in Eq.
f — Y (44). This contribution gives rise to a behavigf )~ 7, at
0v° o(w0+ Q5 —f(w)+[q](v) length scales<B, as can be seen from the kd-Parisi
solution[7,34]. Having in mind such behavior of(7), we
[al(w) ) (45  can write Eq.(43) as
Wo(w?+0§)—f(w)+[ql(u)} ;
— 2
where [q](u) =uq(u)— fidvq(v). Substituting Egs.(44) flw)=—-e fodf[l—coim)] 2097
and(45) in Eqg. (42) and differentiating with respect g one
obtains the equations I
I L /LY )
a2, € erfq -
q'(w)=0, (46) amy¥4(r) 2y"%(7)
or eszd [1-codwT)]
- - wT
~ 213 . 2my(7)
q frd —
\IZW(kBT)SIZ _; 72/4,}/(7_) T
TN erfc » . (48
- do 1 113 4my¥¥(7) 2y"4(1)
( ﬁxﬂ {o(w?+ Qg)_f(w)+[q](u)}2 | The integrand in the first term is regular at smalldue to

the behavior ofy(7) at small 7] and its contribution is un-
If the first equation is valid in the whole intervak [0,1], its ~ important if wé<1, which is the set of wave vectors that
solution is simplyg(u) = const, which is the replica symmet- determines the roughening exponéntin the second term,
ric solution. The second equation is easily solvablé(ib)  we can use, if3<¢, the asymptotic expansion for erfg(
=0 (i.e., e=0) and the solution was discussed by 2d4ed  We obtain, omitting the regular contribution of the first term,
and Paris{7]. Also, one has

2 Hw) ezfocd " o] 1 6y(7n) N 1
(X1 =x(T1?) ~—— ~co S o
([x(7)=x(7)12)=lim= > [Gaa(0)—Gaa(7—7")] o = 7] o7 > =
n~>0n a (49)
=2y(r— 1), (47)  where the dots stand for terms of ordgh(7)/7"*2, with

_ _ _ n=2. Now, sincey(7)~ 2¢ with {<1, then the second term
which allows for the computation @foncey(r) is know. In - j5 £q.(49) is much smaller than the first one and the omitted
the presence of dipolar interactions, E¢3) depends on  (orms are of higher order. We can, therefore, keep only the

7(7-) and one ha_ls to resort to a numerical ap_proach_if ONGirst term and we obtaifi(w)~ — (€%/2)| w|, i.e., the zeroth-
wishes to solve it self-consistently. Howzever, if one .S'mplyorder approximation fof (w) is a good one. The validity of
takes the zeroth-order resufi(w)=~—(e%2)|w|, coming s approximation of course relies on the fact thatl, but,

from the expansion of(w) in powers ofy(7), one sees that, 45 we shall show below, the result obtained indeed coincides
apart from the contribution coming from the line tensien  \itn the Imry-Ma argument, i.e£=1/3. If we now substi-

Egs. (44)—(46) are identical to the ones obtained by Haza-yie this result forf(w) in EqQ. (46) we can perform the

reesing and Meard [9] in their study of the roughening integral(with Q,=0) and obtain a closed equation fipfu).
properties of a liquid-gas interface in a disordered solidyp;g equation reads

Also, if one expands the last term of E@3) to quadratic

order in x(7)—x(7'), one can see more directly that the WAA2Y2 13 e riu)
domain-wall energy has, in this order of approximation, the q(u)= —3) rYu)| —— ——

same analytical form as that obtained by Kolomeisiial. (kgT) 4o [al(u)

for a domain wall in a ferroelastic material and as that used 4o ~13

by Hazareesing and Mard in the study of the problem re- —arctan)( r(u)aﬂ (50)
ferred above(provided one neglects the contribution of the e? ’
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wherer (u) = (e*160) —[q](u). Notice thatr (u) is positive  mensions of an energy and bothr) and = have the dimen-

at smallu since[q](u)—0 whenu—D0. If r(u) becomes sions of a length, it is also easy to see that the dimensions of
negative, this equation is still valid, provided that we writeq(u) are the same as those of. If we define z(u)
r2(u)=i|r(u)|¥? and analytically continue Eq(50) to  =[4dvq(v), one hasg(u)=dz/du and[q](u)=u(dz/du)
imaginary values. This equation relafeg/(u) to q(u), with —z(u). Substituting these equations in E§3), one obtains
[g]’(u)=uqg(u) by definition, through a transcendental a differential algebraic equation fatu). This equation reads
function and cannot be easily solved numerically. It reduces

to the equation discussed by Medaand Parisi7] if one u(dZ 4
7

+

dz 2

Uu——2

dz 2(z+
du U—u— (Z V)

d =0. (59

takes the value of the dipolar interaction to zdie., e du
=0) and to the equation discussed by Hazareesing and

Mezad [9] if one takes the line tension to zefice., c=0). Sincez(u) and v have the same dimensions, it is useful to
In these two cases, this equation reduces to trivial algebraiwrite z(u) in terms of a dimensionless function(u)
equations, which can be easily solved. In the first case, one vx?l(x), wherex=4u®%3a'* is a scaling variable with
obtains{=1, which coincides with the exact result of Zhang 4= 5, = e8(kzT)3/961*A202 being a dimensionless con-
[6] and in the second case one obtajrs1/3, as pointed out  stant[35]. In terms of I(x), the condition(51) becomes
above. In our case, we can nevertheless obtain informatiofy0)=1/252 since thex? power corresponds tow2 behav-
regarding the behavior af(u) at smallu directly from Eq.  jor at smallu. Substitutingz(u) in terms ofl (x) in Eq. (54)

(50). Performing some algebraic manipulations with E5f) e obtain the following differential algebraic equation for
and using the identity arctarnk)=In[(1—x)/(1+X)], one can 1(X):

show that
3 1 23
_ A(keT)? [X1"(00+2100]+ le'<x>+§|(x>) (Zx3|’<x>
lim[q](u)q3(u) == (51)
u—0 M A“e 1
: : - —le(x)—Z) =0, (55)
which shows that, sincéq](u)—0 whenu—0, then one 2

must haveqg(u) =Au'?+ O(u*?) for smallu whereO(u'?) _ _ _ _
indicates terms of order higher than 1/2 and which does not contain any dimensional parameters. The ad-

o ~4.2.2 N2 ) . vantage of this equation with regard to E§3) or Eq.(54) is
;Ef/:g Aigl,%f(&‘z%,% v.thelzl:sVOw(Su%”z)oinn%i?alizts ?:r\:ﬁg]é;j ())r- its scaling form, which means that once we have obtained the

der higher than 3/2. This coincides with the result obtainecfCallng func_tlonl(x), one S|mply_ has to substitute by its

. B . .. T"expression in terms ofi to obtainz(u) for all » and «.
by Hazareesing and Mezh[9], although their solution is Furthermore, since we have to solve E§4) for ue[0,1]
valid in a finite interval around 0. In order to obtain a differ- ’ ' cLea.

) . . ) : this means that we need to solve E¢5 for x
entlal equation validvu<[0.1], we differentiate Eq(50) €[0,4/3¢Y*]. Whena is large[36], this interval becomes a
with respect tau. We get

small interval around 0 and we can linearize ES5), by

q'(u)=0 (52  writing | (x)=1/2%>+m(x). Substituting this equation above
and keeping only terms linear m(x) andm’(x), we obtain
or the differential equation
1 eurd(u) [ nta2g?\ X . 3x3) | )+( 1 3% ) X2
=—— + | ==t =M X)+| —=— | MX)=—=,
=R R | (T 82 512 a2 256 10242
(56)
e r¥3u) arue) | % _ _
X | —= —=— —arctanh ——— . with solution
4o [q](u) e?
2_ 210y — 4
Now, the second equation can, with the aid of Ezp), be m(x) = 8B~ 128¢Inx—3/2x (57)
written in the following form: 8(32\/2+3x?)2

3 5 1 ) 3 where B is an arbitrary constant. Since the solutigh(u)
[al*(w)=»[a](u)+ S uau){la]“(u) = na>(W)}, =0 can be valid in a subinterval §0,1], the general solu-
(53  tion of Eq.(42) is

with v=e*160 and n=e?(kgT)%/6*A?c. This equation is | Z(w) it u<ug,
also valid whenr(u)<0 without the need to perform an a(u)= Z'(uy) if u=ug,
analytic continuation, which is an advantage with regard to

Eq. (50). Now, the physical dimensions of and 7 are, ac- wherez(u) = vx?l(x) with I(x) being given by the full so-
cording to these definitions, given By]=jm~3 and[ 7] lution of Eq. (55) in the general case or simply by the linear
=j~Im? (in mks unit3. Furthermore, sinc&, has the di- approximation

(58)
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0.182 [q](u) in EqQ. (44), we obtain for smallw, using |(0)
0 181 =1/2°2 andl’(0)=0, which follow from the linear approxi-
’ mation, the result
0.18 = ~
9(w)=Cl[ow?+(e%2)|w|] *+ -, (59)
I(x) 0.179 '

where the dots indicate terms that diverge less strongly at
small ® and whereC is a numerical constant. From this
result and from the definition of(7), one immediately con-
cludes that'=1/3, in agreement with the Imry-Ma argument
0.2 0.4 0.6 0.8 1 of Robbins and Joanny. The determination of the crossover
x behavior ofy(7), at length scales comparable wghas well
as the determination of itself (the Imry-Ma argument just
gives the order of magnitugieequires, as stated above, the
solution of the system of transcendental equati@® and

0.178

0.177

FIG. 1. Linearizedcontinuous ling and numericaldashed ling
solutions of Eq.(55) for the same initiakand arbitrary condition
1(1)=0.18095. In the case of the numerical solution, theiPAK

algorithm was iterated down t0=0. It is seen that the two solu- (50).
tions converge to one another closexts 0.
VI. CONCLUSIONS
1 8Bx%—128¢In x— 3\/§x4 We have obtained an expression for the elastic energy of a
(X)=—55 + > Neel domain wall in a thin ferromagnetic film in the pres-
2 8(32\/§+ 3x%) ence of dipolar interactions and a quenched random field,

beyond the quadratic approximation for the dipolar energy.
in the case of large:.. The values of the arbitrary integration Using the replica trick and a variational ansatz, we have
constantB appearing il (x) and ofu, can be determined by obtained a set of self-consistent equations for the Green'’s
substituting the expression faf(u) obtained fromz(u) in  functions of the displacement field of the domain wall. These
Egs. (42) and (50). We have solved Eq(55) numerically equations were solved analytically in the case of two-
using themANPAK algorithm[37], available at netlib.org. A dimensional dipolar interactions by making a quadratic ap-
comparison between a polynomial fit of the numerical soluproximation for the dipolar energy, which was justified on
tion and the linearized solutiofb7) is shown in Figs. 1 and the basis of the different behavior of the domain wall at
2, which shows the correctness of this solution at small different length scales. The problem is then analogous to the
However, even in the case of large where the linear ap- one of a domain wall in a ferroelastic as studied by Kolom-
proximation can be used, we still need to solve the systergiskii et al. and to the one of a liquid-gas contact line in a
composed by the transcendental E@®) and(50), and one  disordered solid, as studied by Hazareesing andavte We,
would have to resort to a numerical approach. Neverthelessherefore, obtain a valug=1/3 for the roughening exponent
since the behavior ofy(7) at large length scales is solely of the domain wall.
determined by the behavior ¢f](u) at smallu, it is still From these calculations, we have obtained some impor-
possible to show, following Hazareesing and2ded[9], that  tant results. First, we were able to represent the dipolar in-
the roughening exponegt=1/3. In order to do that, one has teraction in the domain-wall Hamiltonian as the interaction
to notice thaf q](u) = 1/2vx?l(x) + 3/4vx3l ' (x) for u<u,,  of the quantum particle with a annealed gauge field. Also, in
[g](u)=[q](ue) for u>u.. Substituting this result for 1+1 dimensions, one can integrate out such a field, leaving
us with a polaronlike quantum Hamiltonian. Second, we
7 have shown that a generalized replica symmetry breaking
/ ansatz allows for the treatment of this problem. Note that this

3x 1078

generalization leads to relatively simple equations in our

2x07® case, since the nondiagonal part of the self-energy in replica
/ : space is still wave-vector independent, which is due to the
, __// L o short-range correlated nature of the random field. The treat-
) R ment of long-range correlated disorder is, on the other hand,
1 a much more complicated problef8]. Finally, we were
—2x107 able to justify that taking the quadratic approximation for

two-dimensional dipolar interactions is sufficient to obtain
the correct value of the roughening exponent within this ap-

—3x107°

0 0.2 0.4 0.6 0.8 1 proximation.
FIG. 2. Left-hand side of Eq55) evaluated for the linearized ACKNOWLEDGMENTS
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APPENDIX: COUPLING CONSTANTS AND THEIR e§d=L4 [e34]=jm2, (A3)
PHYSICAL UNITS 2uck @

Here we collect the definitions of the different coupling 2 9 2e2
constants used in this paper, together with their dimensions o2 _ HoHBIL™ S [e2,]=jm (Ad)
in the mks system, denoted Y. One uses the units joule 3d 2a* 3d ’
(j=kgn? s ?), ampere(A), and meter(m). The “funda-
mental” physical constants are the magnetic permittivity of e
the vacuumug, the Bohr magnetopg, the Landeactor for p= 29 [v]=jm~3, (A5)
the systeng, , the numerical value of the sp the strength 160
of the exchange interaction between nearest neighBors
(given in )), the amplitude of the random field correlatiohs egd(kBT)S
(given in A>m~?2) and the lattice constaat Furthermore, in =y, [7]=j"tm? (AB)
the case of a SC/FM/SC heterostructure, one also needs the 6u"A%a

London penetration depth of the superconduetprand its

relative permittivityx, . From the units of these quantities in Where €5 is the value of the coupling constant for two-
the mks[39], one then determines the dimension of the cou-dimensional dipolar interactior{the case treated abovend

pling constants appearing below.

e3, is the value for three-dimensional dipolar interactions.

[1] G. Grinstein and S.-K. Ma, Phys. Rev. Letd, 685(1982.
[2] J. Villain, J. Phys(France Lett. 43, L551 (1982.
[3]Y. Imry and S.-K. Ma, Phys. Rev. LetB5, 1399(1975.
[4] J. M. Burgers;The Nonlinear Diffusion Equatio(Reidel, Bos-
ton, 1974.
[5] D.A. Huse, C.L. Henley, and D.S. Fisher, Phys. Rev. Ls%f.
2924(1985.
[6] Y.C. Zhang, J. Phys. A9, L941 (1986.
[7] M. Mézard and G. Parisi, J. Phys.28, L1229(1990; J. Phys.
I 1, 809(1991.
[8] Y.Y. Goldschmidt, Phys. Rev. B3, 343(1996); Phys. Rev. B
56, 2800(1997; Phys. Rev. B61, 1729 (2000; see also, Y.
Shiferaw and Y.Y. Goldschmidt, J. Phys.38, 4461 (2000;
Phys. Rev. B63, 051803(2001).
[9] A. Hazareesing and M. Mzrd, Phys. Rev. BO, 1269(1999.
[10] L. Balents and D.S. Fisher, Phys. Rev4B, 5949(1993.
[11] T. Emig and T. Nattermann, Phys. Rev. Létl, 1469(1998);
A. Hazareesing and J.-P. Bouchaild. 81, 5953(1998); T.
Emig and T. Nattermannbid. 81, 5954(1998.

[12] See also,
Minyukov, Fiz. Tverd. TelaLeningrad 30, 545 (1988 [Sov.

Phys. Solid State30, 311 (1988]. In this paper, the authors
present an extensive study of two cases, the one of a domain
wall in a bulk ferroelectric material in the presence of dipolar
interactions and the one of a domain wall in a ferroelastic

E.B. Kolomeiskii, A.P. Levanyuk, and S.A.

of the roughening exponent is 1/2, a result that also follows
from the calculation of Emig and Nattermann. However, their
discussion was, as stated above, limited to a three-dimensional
crystal, i.e., to a domain wall witl=2. The results for the
ferroelastic material are also of interest to the present work,
see discussion in the main text.

[13] J. Lajzerowicz, Ferroelectrica4, 179(1980.

[14] T. Natterman, J. Phys. @6, 4125(1983.

[15] Note that for a one-dimensional domain wall the contribution
to the elastic energy coming from the dipolar energy is, in the
quadratic approximatiofil4], «—g?lnq at small wave vec-
tors, i.e., the energy acquires a logarithmic correction. This
correction is not taken into account if one performs the ana-
lytical continuation of the results of Emig and Natterman to
D=1.

[16] U. Deker and F. Haake, Phys. Rev.A 2043(1975.

[17] R.P. Feynman, Phys. Re%7, 660 (1955.

[18] H. Spohn, J. Phys. A9, 533(1986.

[19] G. Parisi, J. Phys. A3, 1887(1980.

[20] J.E. Santos, E. Frey, and F. Schwabl, Phys. Re&3B)54439
(2002.

[21] We shall use the mks system in this paper since it allows for an

easy analysis of the physical dimensions of the quantities in-

volved. See the Appendix for a list of the coupling constants
and their physical units in the mks.

material, in arbitrary dimensions. In the first case, they havg22] R. Allespach, J. Magn. Magn. Mateir29, 160(1994).
concluded, based on the the Imry-Ma argument given in Refs[23] See T. Nattermann, i8pin Glasses and Random Fieldslited

[1,2] and on the change of the effective dimension of the prob-
lem due to the presence of dipolar interactions, that the value

by A. P. Young(World Scientific, Singapore, 1998and refer-
ences therein.

031608-10



DOMAIN WALL ROUGHENING IN DIPOLAR FILMS IN . ..

[24] The rescalinghY=h/a is performed such that in the con-
tinuum limit a— 0, the correlation function of the scaled field
hY is a delta function if we chooslaq“_m‘;:Aﬁij 5P,

[25] This mapping appears when considering the energy of linelike
defects in the presence of long-range forces. See H. Kleinert,
Gauge Fields in Condensed Mattéworld Scientific, Sin-
gapore, 1989 Vol. I, and references therein.

[26] This gauge transformation corresponds to adding the total de-

rivative term %% dr(d/d7) [¥Pdx'A(x',7) to the action.
Due to the period‘fc boundary conditions along thgy) direc-
tion the overall contribution of this term is zero. Also, notice
that this gauge transformation can only be performed in one
space dimension.

[27] S.F. Edwards and P.W. Anderson, J. Phys. F: Met. P5y365
(1975.

[28] J. Adamowski, B. Gerlach, and H. Leschke, J. Math. Phys.
23(2), 243(1982.

[29] This form of the correlator allows for a smooth introduction of
a cutoff in the momentum integrals ovegy and leads naturally
to the existence of a Larkin length. Note that a cutoff is always
provided by the existence of a finite lattice spacmdut its
introduction via the noise correlations makes the equations
analitically more tractable. In the limit in which one wants to
treat isotropic correlations, one should taRe a.

A(q,w)=A(q), which implies that the disorder is locally cor-

PHYSICAL REVIEW E 65 031608

tion is relevant whereas the line tension is not. One should first
notice that there is also a competition between the dipolar term
and the line tension term and that the dipolar term becomes
dominant over the line tension term at length scales of the
order ~a/e? (see Appendix for unils Therefore, one must
have thatB< o/e?< ¢=e*B3/?A, in order for the above as-
sumption to be true, which of course depends on the values of
B andA we choose. If such condition holds, then one expects
three distinct regimes. One regime for whigh—7'|<B, in
which thermal fluctuations are dominant since the random field
does not play a role at these length scales. Here the roughening
exponent is simply the thermal one, i.6= 1/2, due to the line
tension. A second regimé<|7— 7’| <&, in which one can use

a linear approximation for the random-field and in which the
replica symmetric solution holds. The value ofs also equal

to 1/2 in this regime, which follows from the analysis of Haza-
reesing and Meard. Finally, ifr— 7= ¢, ¢=1/3, since at these
length scales the line tension does not play a role and the
replica symmetry breaking solution of Hazareesing and
Mézard holds.

[35] Obviously, these results are valid provided thatnd » are not

zero (i.e.,e#0). If e=0 then one obtains from E@53) the
solution of Meard and Paris7].

[36] a large means either that the dipolar interaction is strong or
[30] Note that in our case, we have chosen the disorder correlator

that the temperature is high or that either the line tensiar
the noise strengtiA are small.

related along ther(y) axis. Goldschmidt has also considered [37] W.C. Rheinboldt, Comput. Math. App82, 15 (1996; 33, 31

the caseA(q,w)=A(Q)d, 0, Which implies that the disorder
correlator is independent e{y). For the corresponding prob-
lem of a quantum particle in a disordered potential, this just
means that such potential is independent of time.

[31] In the case of the problem of a quantum particle in a static
random potential, Goldschmidt has considered an ansatz in
which the only component @,,(7— 7') that has a nondiago-
nal part is the zero-frequency one, i.@.gb.

[32] M.O. Robbins and J.F. Joanny, Europhys. L8{t729(1987).

[33] A.l. Larkin, Zh. Eksp. Teor. Fiz58, 1466(1970 [ Sov. Phys.
JETP31, 784(1970].

[34] Here, we are assuming that the line tension plays a role at

(1997.

[38] As stated above, one very important example of long-range

correlated disorder is the one considered by Goldschmidt that
has a direct application to the problem of a quantum patrticle in
a static random potential and to the related problem of a poly-
mer in a medium with long-range correlated disorder. Since
Goldschmidt has considered a rather general variational ansatz
where the diagonal part of the self-energy is dependenb,on

as we have done above, such variational ansatz could in prin-
ciple be used to treat the problem of a quantum polaron in a
random static potential. We thank M. eterd for calling our
attention to this point.

length scales smaller thahwhereas the dipolar interaction is [39] See, for example, D. Halliday, R. Resnick, and J. Walken-

unimportant, and that at length scateg, the dipolar interac-

031608-11

damentals of Physic&Viley, New York, 1993.



